N—Fe—C01	101.00 (9)	C1-C2-H2	122 (2)
N—Fe—C2	65.36(8)	C3-C2-H2	125 (2)
N—Fe—C02	159.7 (1)	Fe-C02-002	176.6 (3)
N—Fe—C3	65.54 (7)	Fe—C3—C2	69.5 (1)
NFeC03	96.6(1)	Fe—C3—C4	94.2 (1)
C01—Fe—C2	103.6(1)	FeC3H3	126 (2)
C01-Fe-C02	94.2 (1)	C2—C3—C4	105.1 (2)
C01FeC3	144.6 (1)	C2-C3-H3	129 (2)
C01—Fe—C03	106.3 (1)	C4C3H3	119 (2)
C2-Fe-C02	98.1 (1)	FeC03O03	179.0 (3)
C2—Fe—C3	41.10 (9)	NC4C3	93.4 (1)
C2-Fe-C03	147.6(1)	N-C4-C5	101.9 (1)
C02FeC3	94.3 (1)	NC4H4	114 (2)
C02FeC03	92.0(1)	C3C4H4	116 (2)
C3—Fe—C03	107.7 (1)	C5—C4—H4	118 (2)
C3C4C5	110.6 (2)	C4C5C6	107.2 (2)
FeNC1	93.6(1)	C4C5C51	122.1 (2)
Fe—N—C4	93.0(1)	C6-C5-C51	130.5 (2)
Fe—N—C11	131.3 (1)	C1-C6-C5	106.6 (2)
C1NC4	93.9 (1)	C1-C6-C61	123.1 (2)
CINCII	117.9 (2)	C5C6C61	130.3 (2)
C4—N—C11	118.5 (1)	NC1H1	114 (2)
N—C1—C2	93.1 (2)	C2C1H1	118 (2)
N—C1—C6	102.5 (1)	C6-C1-H1	116 (2)
C2C1C6	110.2 (2)	FeC2C1	95.0 (1)
Fe—C2—H2	125 (2)	Fe-C01-001	175.4 (2)
C1—C2—C3	105.3 (2)	Fe—C2—C3	69.4 (1)

The title compound was synthesized by reacting $Fe_2(CO)_9$ with 7-azanorbornadiene in thf under N₂ overnight. During the reaction, three types of stable metal complex were isolated, i.e. [Fe(C₁₆H₁₄ClNO₄)(CO)₄] and two structural isomers of [Fe(C₁₆H₁₄ClNO₄)(CO)₃] (Sun, Wang & Yang, to be published). A similar reaction was observed during the study of other typical reactions of ANB derivatives with Fe2(CO)9 (Sun, Chow & Lui, 1990). Dark-red crystals of [Fe(C₁₆H₁₄ClNO₄)(CO)₃] were grown from ethyl acetate/n-hexane mixed solvent. The structure was solved by direct methods using Personal SDP (Frenz, 1989). H atoms on the fused ring were located on difference maps and refined as normal atoms with fixed isotropic displacement parameters. Other H atoms were placed at idealized positions and included in the structure-factor calculations but not in the least-squares calculations. Four out of six phenyl-ring C atoms are disordered. The site occupancy for one ring is fixed at 0.75 and for the other is fixed at 0.25. The dihedral angle for these two rings is 54.8(4)°. Fig. 1 shows only the larger site occupancy for clarity. All calculations were carried out on an 80386-based IBM-compatible PC.

These studies are supported by the National Science Council (NSC81-0208-M031-03) of Taiwan.

References

- Frenz, B. A. (1989). Personal SDP A Real-Time System for Solving, Refining and Displaying Crystal Structures. B. A. Frenz & Associates, Inc., College Station, Texas, USA.
- Johnson, C. K. (1970). *ÖRTEP*. Report ORNL-3794, second revision. Oak Ridge National Laboratory, Tennessee, USA.

- Liu, L.-K., Sun, C.-H., Yang, G.-Z., Wen, Y.-S., Wu, C.-F., Shih, S.-Y. & Lin, K.-S. (1992). Organometallics, 11, 972–976.
- Sun, C.-H. & Chow, T. J. (1988). J. Chem. Soc. Chem. Commun. pp. 535-536.
- Sun, C.-H., Chow, T. J. & Liu, L.-K. (1990). Organometallics, 9, 560-565.
- Wang, J.-C., Sun, C.-H., Chow, T. J. & Liu, L.-K. (1991). Acta Cryst. C47, 2459-2461.

Acta Cryst. (1993). C49, 383-385

mer-Trichlorotris(2,3-dihydrobenzo[*b*]thiophene-*S*)rhodium(III)

MASOOD PARVEZ, JAMES F. FAIT, PETER D. CLARK AND COLIN G. JONES

Department of Chemistry, The University of Calgary, 2500 University Drive NW, Calgary, Alberta, Canada T2N 1N4

(Received 21 April 1992; accepted 8 September 1992)

Abstract

The Rh atom has a distorted octahedral geometry. Two of the benzothiophenyl ligands occupy *trans* equatorial positions with Rh—S distances [2.351 (1) and 2.369 (1) Å] which are significantly longer than the third [2.330 (1) Å] distance. The Rh—Cl distances are in the range 2.333 (2)–2.359 (1) Å. The benzothiophenyl ligand at the axial position is inclined at almost right angles [mean-planes angles 89.6 (2) and 79.5 (2)°] to the other two ligands which lie almost parallel to each other [mean-planes angle 10.4 (2)°].

Comment

Organosulfur compounds coordinated to transitionmetal species are of general interest as models for interactions which occur during the catalytic hydrodesulfurization of hydrocarbons (Dong, Duckett, Ohman & Jones, 1992). Industrially, this process is carried out on a large scale to produce sulfur-free transportation fuels. The title compound (I) is an example of a complex which may model species formed during the hydrodesulfurization of benzo-[b]thiophene. Partial hydrogenation of benzothiophene is known to produce the 2,3-dihydro derivative, a compound which should readily coordinate to metal species. The rhodium complex of 2,3dihydrobenzo[b]thiophene was prepared by heating

© 1993 International Union of Crystallography

Lists of structure factors, anisotropic thermal parameters, H-atom coordinates and complete geometry have been deposited with the British Library Document Supply Centre as Supplementary Publication No. SUP 55556 (28 pp.). Copies may be obtained through The Technical Editor, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England. [CIF reference: NA1009]

an ethanolic solution of the ligand with rhodium(III) chloride followed by recrystallization of the crude product from aqueous ethanol. Full details of the basic experimental procedure for the synthesis have been described elsewhere (Clark, Fait, Jones & Kirk, 1991).

Fig. 1. Perspective view of the title compound with crystallographic numbering scheme plotted by ORTEPII (Johnson, 1976).

Experimental

Crystal data	
[Rh(C ₈ H ₈ S) ₃ Cl ₃] $M_r = 617.91$ Monoclinic $P2_1/c$ a = 7.947 (2) Å b = 31.447 (3) Å c = 10.275 (1) Å $\beta = 109.57$ (1)° V = 2419.48 Å ³ Z = 4 $D_x = 1.697$ Mg m ⁻³ $D_m = 1.65$ (4) Mg m ⁻³	Density measured by flota- tion Mo K α radiation $\lambda = 0.71069$ Å Cell parameters from 25 reflections $\theta = 10-20^{\circ}$ $\mu = 1.24$ mm ⁻¹ T = 295 K Plate 0.65 × 0.20 × 0.14 mm Orange-red

Data collection

Enraf-Nonius CAD-4 diffractometer Variable speed $\omega/2\theta$ scans

Absorption correction:	θ_{\max}
DIFABS (Walker & Stu-	h = 0
art, 1983)	k = 0
$T_{\min} = 0.877, T_{\max} =$	<i>l</i> = -
1.107	3 sta
7764 measured reflections	fre
7029 independent reflections	int
. 1	

Refinement

Rh

Cl(1)

Cl(2)

Cl(3) S(1) S(2) S(3) C(1) C(2) C(3) C(4)

C(5) C(6)

C(7) C(8)

C(9)

C(10)

C(11) C(12) C(13) C(14) C(15)

C(16) C(17)

C(18) C(19) C(20) C(21) C(22) C(23) C(24)

 $(\Delta/\sigma)_{\rm max} = 0.08$ Refinement on FFinal R = 0.046wR = 0.030S = 2.3774625 reflections 280 parameters H-atom parameters not refined 2.2B) $w = 1/\sigma(F)$

$= 30^{\circ}$ $0 \rightarrow 11$ $\rightarrow 44$ $-13 \rightarrow 13$ ndard reflections equency: 60 min tensity variation: none

 $\Delta \rho_{\rm max} = 0.7 \ {\rm e} \ {\rm \AA}^{-3}$ $\Delta \rho_{\rm min} = -1.1 \ {\rm e} \ {\rm \AA}^{-3}$ Atomic scattering factors from International Tables for X-ray Crystallography (1974, Vol. IV, Table

Table 1. Fractional atomic coordinates and equivalent isotropic thermal parameters (Å²)

 $U_{eq} = 1/3$ (trace of the orthogonalized U_{ii} tensor).

x	v	z	U_{ea}
0.73128 (5)	0.14858 (1)	0.43449 (3)	0.0338 (2)
0.4809 (2)	0.1720(1)	0.4886(1)	0.0429 (7)
0.5560 (2)	0.1315 (1)	0.2057 (1)	0.0434 (6)
0.9880 (2)	0.1258 (1)	0.3929 (1)	0.0465 (7)
0.8891 (2)	0.1738 (1)	0.6549 (1)	0.0360 (6)
0.7634 (2)	0.2130(1)	0.3293 (1)	0.0324 (6)
0.7033 (2)	0.0793 (1)	0.5150(1)	0.0459 (7)
0.8855 (7)	0.1364 (1)	0.7848 (4)	0.039 (2)
1.0496 (7)	0.1181 (2)	0.8478 (5)	0.048 (3)
1.0685 (9)	0.0910 (2)	0.9591 (6)	0.070 (4)
0.9238 (10)	0.0840 (2)	1.0022 (6)	0.073 (4)
0.7622 (9)	0.1020 (2)	0.9358 (6)	0.062 (4)
0.7410 (7)	0.1283 (2)	0.8249 (5)	0.049 (3)
1.1893 (7)	0.1297 (2)	0.7872 (5)	0.060 (3)
1.1307 (6)	0.1692 (2)	0.7041 (5)	0.049 (3)
0.9350 (5)	0.2453 (1)	0.4400 (4)	0.031 (2)
0.8694 (6)	0.2763 (1)	0.5066 (4)	0.031 (2)
0.9856 (6)	0.3050 (1)	0.5932 (4)	0.038 (3)
1.1645 (7)	0.3025 (2)	0.6080 (5)	0.047 (3)
1.2248 (6)	0.2721 (2)	0.5394 (5)	0.053 (3)
1.1113 (6)	0.2425 (2)	0.4534 (5)	0.041 (3)
0.6709 (6)	0.2737 (1)	0.4760 (4)	0.034 (2)
0.5962 (6)	0.2517 (1)	0.3363 (4)	0.038 (2)
0.6769 (8)	0.0427 (2)	0.3801 (5)	0.052 (3)
0.5076 (9)	0.0317 (2)	0.3119 (6)	0.060 (3)
0.4642 (10)	0.0032 (2)	0.2060 (6)	0.079 (4)
0.5995 (13)	-0.0147 (2)	0.1712 (7)	0.099 (5)
0.7739 (11)	-0.0046 (2)	0.2420 (8)	0.095 (5)
0.8125 (8)	0.0253 (2)	0.3474 (6)	0.067 (4)
0.3736 (8)	0.0536 (2)	0.3624 (7)	0.075 (4)
0.4713 (9)	0.0689 (2)	0.5053 (7)	0.080 (4)

Table 2. Geometric parameters (Å, °)

Rh—S(1) Rh—S(2)	2.330 (1) 2.351 (1)	C(5)—C(6) C(7)—C(8)	1.372 (8) 1.491 (7)
Rh—S(3)	2.369 (1)	C(9)-C(14)	1.364 (7)
Rh—Cl(1)	2.356 (2)	C(9)—C(10)	1.390 (7)
Rh—Cl(2)	2.359 (1)	C(10)—C(11)	1.380 (6)
RhCl(3)	2.333 (2)	C(10)—C(15)	1.504 (6)
S(1)C(1)	1.787 (5)	C(11)—C(12)	1.381 (7)
S(1)C(8)	1.820 (5)	C(12)—C(13)	1.366 (8)
S(2)—C(9)	1.773 (4)	C(13)-C(14)	1,388 (7)
S(2)—C(16)	1.821 (5)	C(15)—C(16)	1.523 (6)
S(3)—C(17)	1.759 (5)	C(17)—C(18)	1.338 (8)
S(3)—C(24)	1.842 (7)	C(17)—C(22)	1,348 (9)

C(1)—C(6) C(1)—C(2) C(2)—C(3) C(2) —C(7)	1.367 (8) 1.373 (7) 1.393 (8)	C(18)—C(19) C(18)—C(23) C(19)—C(20) C(20) C(21)	1.362 (8) 1.498 (10 1.363 (13
C(2) - C(4) C(3) - C(4) C(4) - C(5)	1.382 (11) 1.360 (9)	C(21)C(22) C(23)C(24)	1.388 (9) 1.493 (9)
S(1)—Rh—S(2) S(1)—Rh—S(3) S(1)—Rh—Cl(1) S(1)—Rh—Cl(2)	92.72 (4) 93.25 (4) 83.47 (5) 172.96 (5)	C(4)C(3)C(2) C(5)C(4)C(3) C(4)C(5)C(6) C(1)C(6)C(5)	119.2 (5) 121.3 (6) 120.1 (7) 118.7 (5)
S(1)—Rh—Cl(3) S(2)—Rh—S(3) S(2)—Rh—Cl(1)	93.65 (5) 172.55 (5) 93.97 (5)	C(2)C(7)C(8) C(7)C(8)S(1) C(14)C(9)C(10)	108.0 (4) 108.8 (4) 122.6 (4)
S(2)—Rh—Cl(2) Cl(3)—Rh—S(2) Cl(3)—Rh—S(3)	81.80 (4) 86.81 (5) 88 36 (5)	C(14)— $C(9)$ — $S(2)C(10)$ — $C(9)$ — $S(2)C(11)$ — $C(10)$ — $C(9)$	124.8 (4) 112.5 (3) 119.7 (4)
Cl(1)—Rh— $S(3)Cl(2)$ —Rh— $S(3)Cl(2)$ —Rh— $S(3)$	91.14 (5) 92.57 (4) 92.46 (5)	C(11) - C(10) - C(15) C(9) - C(10) - C(15) C(10) - C(11) - C(12)	126.8 (4) 113.5 (4)
Cl(1)— Rh — $Cl(2)Cl(1)$ — Rh — $Cl(3)Cl(2)$ — Rh — $Cl(3)$	92.40 (3) 177.05 (4) 90.47 (5)	C(10) - C(11) - C(12) C(13) - C(12) - C(11) C(12) - C(13) - C(14) C(12) - C(14) - C(14)	120.6 (4) 122.2 (5)
C(1)S(1)C(8) C(1)S(1)Rh C(8)S(1)Rh	91.1 (2) 111.3 (1) 114.6 (2)	C(9) - C(14) - C(13) C(10) - C(15) - C(16) C(15) - C(16) - S(2)	105.8 (4) 106.3 (3)
C(9)—S(2)—C(16) C(9)—S(2)—Rh C(16)—S(2)—Rh	90.4 (2) 112.2 (1) 111.4 (2)	C(18)- $C(17)$ - $C(22)C(18)$ - $C(17)$ - $S(3)C(22)$ - $C(17)$ - $S(3)$	120.8 (5) 114.5 (5) 124.6 (4)
C(17)— $S(3)$ — $C(24)C(17)$ — $S(3)$ — $RhC(24)$ — $S(3)$ — Rh	89.4 (3) 109.1 (2) 110.7 (2)	C(17) $C(18)$ $C(19)C(17)$ $C(18)$ $C(23)C(19)$ $C(18)$ $C(23)$	122.0 (7) 114.0 (5) 124.0 (6)
C(6)— $C(1)$ — $C(2)C(6)$ — $C(1)$ — $S(1)$	122.8 (5) 124.9 (4)	C(18) - C(19) - C(20) C(19) - C(20) - C(21) C(20) - C(21) - C(21)	118.0 (6) 120.8 (7)
C(2) - C(1) - S(1) C(1) - C(2) - C(3) C(1) - C(2) - C(7)	112.2 (4) 117.9 (6) 115.1 (4)	C(20)- $C(21)$ - $C(22)C(17)$ - $C(22)$ - $C(21)C(24)$ - $C(23)$ - $C(18)$	119.4 (8) 118.9 (6) 107.1 (5)
C(3)C(2)C(7)	127.0 (5)	C(23) - C(24) - S(3)	106.9 (5)

Space group $P2_1/c$ from systematic absences (0k0, k odd; h0l, l odd). Lorentz-polarization and absorption corrections; no extinction correction. Structure solved by direct methods using Xtal2.6 (Hall & Stewart, 1989) and refined by full-matrix least-squares calculations. Non-H atoms allowed to refine with anisotropic temperature factors. H atoms included at geometrically idealized positions (C—H 0.95 Å).

The authors wish to thank the Natural Sciences and Engineering Research Council of Canada and Alberta Sulfur Research Ltd, Calgary, Alberta, for financial support.

Lists of structure factors, anisotropic thermal parameters, H-atom coordinates and complete geometry have been deposited with the British Library Document Supply Centre as Supplementary Publication No. SUP 55522 (59 pp.). Copies may be obtained through The Technical Editor, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England. [CIF reference: BR1009]

References

- Clark, P. D., Fait, J. F., Jones, C. G. & Kirk, M. J. (1991). Can. J. Chem. 69, 590-598.
- Dong, L., Duckett, S. B., Ohman, K. F. & Jones, W. D. (1992). J. Am. Chem. Soc. 114, 151–160.
- Hall, S. R. & Stewart, J. M. (1989). Editors. Xtal2.6 User's Manual. Univs. of Western Australia, Australia, and Maryland, USA.
- Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
- Walker, N. & Stuart, D. (1983). Acta Cryst. A39, 158-166.

Acta Cryst. (1993). C49, 385-387

Structure of 6-Methyl-2-oxabicyclo[4.3.0]non-4-ene-3,8-dione

J. ZUKERMAN-SCHPECTOR

Instituto de Física e Química de São Carlos, Universidade de São Paulo, Caixa Postal 369, 13560 São Carlos, SP, Brazil

RONALDO C. BOSCAINI

Departamento de Química, FFCL, Universidade de São Paulo, 14049 Ribeirão Preto, SP, Brazil

J. TERCIO B. FERREIRA AND FRANCISCO A. MARQUES

Departamento de Química, Universidade Federal de São Carlos, 13560 São Carlos, SP, Brazil

(Received 2 June 1992; accepted 6 August 1992)

Abstract

The pyrone ring adopts a C(9)-sofa conformation and the *cis*-fused five-membered ring is in a C(5)envelope conformation. The methyl group is in a pseudo-axial position. The molecular packing involves C—H \cdots O contacts.

Comment

During the studies of seeds of Otoba parvifolia (Mkfg) A. Gentry (Ferreira, 1985), some novel compounds were isolated and identified. The spectroscopic data for the bicyclic lactone (2) raised some doubts about the assignments. In order to explain the data for the natural product, the model compound (1) (in which the farnesyl group is substituted by a methyl group) was synthesized and a crystal structure determination undertaken to determine its stereochemistry unambiguously.

The pyrone ring is in a sofa conformation with C(9) 0.540 (3) Å out of the plane formed by the other five atoms; the carbonyl O atom O(2) lies 0.217 (3) Å out of the plane. As in other pyrones (Selladurai & Subramanian, 1992, and references therein) the angle O(2)—C(2)—O(1) is smaller than O(2)—C(2)—O(3).

© 1993 International Union of Crystallography